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Macroscale interfacial conservation equations are derived for transport processes
occurring in immiscible fluid—fluid systems possessing moving and deforming
interfaces via a rigorous matched asymptotic expansion scheme from the more exact,
continuous (‘diffuse’) microscale equations underlying them. A surface-fixed
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166 G. M. Mavrovouniotis and H. Brenner

coordinate system is developed for the parameterization of the interface, alleviating
approximations which result when either a material or a space-fixed control volume
is used to investigate systems undergoing interphase mass transfer.

1. Introduction

Interfacial systems have traditionally been viewed (Scriven 1960, see the extended
derivation in Aris 1962 ; Slattery 1964 a, b; Ghez 1966 ; Moeckel 1975; Slattery 1980;
Waxman 1984 ; Gurtin & Struthers 1990) as consisting of two (or more) immiscible
‘homogeneous’ bulk fluids separated by a singular two-dimensional surface. The two
bulk fluids are each separately characterized by bulk material properties which,
though separately continuous within each of the two bulk-fluid regions, may suffer
jump discontinuities across the interface. The two-dimensional surface composing
the interface is itself characterized as being endowed with distinct interfacial
material properties of its own, such as interfacial tension in the static case and
interfacial shear and dilatational viscosities in the dynamic case. Conservation and
constitutive equations are separately written for the two bulk fluids and the dividing
surface. The transport equations for the two-dimensional surface then play the role
of boundary conditions for the bulk equations, furnishing the so-called jump
boundary conditions imposed upon the generally discontinuous bulk-fluid fields
across the singular surface. Although the above view of the interface is quite useful
for examining material interfaces, it is inherently ambiguous when mass transfer
occurs across the interface. In particular, how are material interfacial properties to
be assigned to the two-dimensional interface when the latter is not composed of
material points ?

The two-dimensional, ‘macroscale’ view of the interface is, however, universally
recognized as only a useful approximation of the true physical state of the system
(Gibbs 1957). In actuality, the interfacial region between the two immiscible fluids
is a highly inhomogeneous, three-dimensional transition region over which rapid
changes in material properties (and the corresponding fields, such as mass density,
species concentration, stress, etc.) may occur. In this diffuse, three-dimensional,
‘microscale’ view, the relevant continuum fields are assumed to vary continuously
throughout the entire space, albeit some fields extremely steeply within the
interfacial region in the direction of the surface normal.

Such a microscale conception of the interface has previously been used (Eliassen
1963 ; Murphy 1966 ; Slattery 1967 ; Deemer & Slattery 1978; Goodrich 1981 ; Alts &
Hutter 1988) to theoretically investigate the transport properties of moving and
deforming interfaces. In these investigations, an important distinction is made
between the ‘true’, continuous, three-dimensional (microscale) view of the interfacial
region and the useful, but approximate, discontinuous, two-dimensional (macroscale)
view of the interface. The macroscale view of the interface is, in such ‘classical’
theories, reconciled with the microscale view via the choice of a Gibbs dividing
surface (Gibbs 1957; Tolman 1948; Buff 1956; Ono & Kondo 1960). All of the
macroscale inhomogeneities arising from the three-dimensional character of the
interfacial region are ‘lumped’ into so-called surface-excess and related interfacial
fields assigned at each point of the two-dimensional interface. These theories
generally attempt to construct an equivalent two-dimensional, macroscale model of
the interface. However, by attempting to furnish an exact reconciliation of the

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 1. Macroscale (L) against microscale (/) views of the same field : an example. Variation in the
fluid mass density p as a function of the normal distance n above the interface: (a) traditional,
macroscale view, displaying a discontinuous density change at the interface n = 0; (b) microscale
view, showing an expanded scale for the diffuse interfacial region.

f—

micro- and macroscale views, this approach ignores the inherently asymptotic nature
of the macroscale view, which only approximates — but cannot exactly reproduce —
the detailed physics of the original microscale problem.

The microscale view of the interface can be quite useful for examining the problem
of interphase mass transport. Slattery (1967), recognizing that previous macroscale
approaches (Scriven 1960; Slattery 1964a,b) for investigating interfacial mass
transport were deficient in that ‘the concept of following a region of material within
the interface contradicts the assumption of simultaneous interphase mass transfer’,
used the microscale view of the interface to examine interphase mass transport. This
work was later extended and clarified by Deemer & Slattery (1978). More recently,
Dell’Isola & Romano (1987 a, b) also examined this problem. Rather than assigning
surface-excess properties to the interface, they treated the interface as a film through
which mass could be transported and whose thickness approaches zero.

An asymptotic scheme for systematically deriving the macroscale interfacial
conservation and constitutive equations from knowledge of the comparable
microscale equations was developed by Brenner (1979) for static interfacial systems
and by Brenner & Leal (1977, 1978a, b, 1982) for systems containing adsorbed
surfactant species undergoing surface diffusion and convection as well as mass
transport across the interface. Matched asymptotic expansion techniques provided
a rational method for systematically reconciling the macro- and microscale views.

In this paper, the latter asymptotic approaches are generalized and extended to
include systems containing moving and deforming interfaces. To better understand
the asymptotic approach presented herein, consider a system consisting of two fluids
whose common ‘boundary’ is a thin three-dimensional transition region. Let the
characteristic length [/ of the microscale be chosen as the effective ‘thickness’ of this
interfacial transition region. Imagine an experimental probe able to discern field
changes occurring over the small length scale [, while still sampling a sufficiently large
region of space (and time) to permit the random motions of individual molecules to
average out and, hence, enabling the system to be treated as a continuum. (This
assumption limits the applicability of the subsequent theory to circumstances for
which a continuum description of the diffuse interfacial region is valid.) Use of this
‘microscale probe’ permits the mapping of each continuum field of the system
throughout the entire fluid space. Each such field, when observed from the
microscale, is assumed to be strictly continuous throughout the entire space,
including the interfacial transition region (for example, see figure 1b).

Suppose the size of the probe is incrementally increased, permitting the probe to

Phil. Trans. R. Soc. Lond. A (1993)
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168 G. M. Mavrovouniotis and H. Brenner

sample ever larger fluid regions. At some stage, the probe will clearly become too
coarse to detect any rapid changes occurring over the length scale { of the interfacial
transition region, although its aperture will still be sufficiently small to detect and
record those more gradual field changes occurring within the separate ‘bulk-fluid’
regions. Define the characteristic length L of the macroscale to be the minimum
length scale over which such a probe can detect changes in the continuum fields.
Since this ‘macroscale probe’ is, by definition, able only to discern continuum field
changes occurring over the larger length scale L characteristic of changes within the
bulk-fluid regions, the interfacial region appears to be a singular two-dimensional
surface to the ‘macroscale observer’ employing the probe. Using this macroscale
probe, a systematic mapping of any physical continuum field of the system can be
performed throughout the entire space. Although all relevant physical fields appear
separately continuous within each of the two bulk-fluid regions, they may appear (to
the macroscale observer) to change discontinuously upon crossing the interface (for
example, see figure 1a).

As [ is generally of the order of nanometres and L of millimetres or centlmetres

these lengths are henceforth assumed to satisfy the strong inequality ¢= Z/L <1.
The essence of the asymptotic approach presented here consists of recognizing that
the diffuse, three-dimensional, interfacial transition region seen by the microscale
observer will only truly become a two-dimensional macroscale singular surface in the
formal mathematical limit ¢— 0.

Because of the existence of the two very disparate length scales [ and L over which
significant continuum field changes occur, interfacial systems are amenable to
theoretical analysis by the method of matched asymptotic expansions, with the
parameter e playing the role of a small parameter in the perturbation analysis of the
exact, microscale transport equations. Only the first-order terms in this perturbation,
found by taking the limit as ¢e— 0, are essential, considering the above premise upon
which the present work is based. Such an analysis will provide a systematic and
rational method for deriving the pertinent macroscale, surface-excess, interfacial
conservation and constitutive transport equations (together with the macroscale
interfacial phenomenological coefficients appearing in the latter) from a knowledge
of the comparable microscale conservation and constitutive equations and their
volumetric phenomenological material functions. Trivially, one concurrently obtains
the ‘bulk’ conservation and constitutive equations, as well as the corresponding
phenomenological functions, that characterize the immiscible fluids lying on either
side of the singular surface. Our methods will prove to be valid not only for material
interfaces but also for non-material phase interfaces.

In this paper (Part I), an asymptotic method for analysing systems containing
moving and deforming interfaces is developed. This method provides a rational,
mathematical reconciliation of the micro- and macroscale views of the interface. The
fundamental generic conservation equations for the two-dimensional macroscale
interface (as well as for the two bulk-fluid regions on either side of the interface) are
then derived from the corresponding microscale equations. The derivation of
macroscale interfacial constitutive equations is discussed in Part II (the following

paper).

Phil. Trans. R. Soc. Lond. A (1993)
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q® - coordinate curve

AN

parent surface,

() g3 = const.
Figure 2. Surface-fixed coordinate system used to parametrize euclidean physical space. A point
P, ‘fixed’ on the coordinate parent surface is represented by the instantaneous position vector
x, = x(q", ¢% t) originating from the space-fixed origin O. The velocity of P, as seen by a space-fixed
observer at O is given by the vector u, and the unit normal to the surface at P, by the vector n.
An arbitrary point P in physical space is represented by the position vector x = x(x,,q%t)
originating from the origin O. (Since the g*-coordinate curves can change with time, the variable
¢t in the argument is not redundant.) In this parametrization, the unit tangent vector to the ¢*-
coordinate curve is defined to be perpendicular to the parent surface, and thus equivalent to n, at
every point P, on the parent surface. The velocity of the surface-fixed coordinate system at P as
seen by a space-fixed observer at O is given by *u.

2. Surface-fixed coordinate system

The development of macroscale equations for systems containing mobile interfaces
is facilitated by parameterizing the three-dimensional physical space domain
containing the interfacial system via use of a surface-fixed coordinate system (see
figure 2). Such a system is affixed to a two-dimensional riemannian coordinate
reference (or parent) surface, which may move and deform within conventional
three-dimensional physical space, the latter here assumed to be euclidean. This
parameterization is not based upon defining material points; thus, the possibility of
mass transport across the interface is not excluded. Instead, the surface-fixed
coordinate system parameterization depends only upon the construction of a non-
material, time-dependent coordinate parent surface which coincides with the two-
dimensional macroscale interface at all times.

The interfacial system is assumed to be embedded in three-dimensional euclidean
physical space. An arbitrary point P in physical space will be uniquely defined (with
respect to an inertial reference frame centred at the origin O) by the position vector
x originating at O and terminating at P. A point will be considered to be space-fixed
if its position vector remains constant throughout all time in this inertial reference
frame.

The surface-fixed coordinate system is affixed to a two-dimensional moving and
deforming “coordinate parent surface. This parent surface is so constructed as to
coincide at all times with the two-dimensional physical macroscale interface. From
the microscale point of view, such a construction implies that the parent surface
must lie somewhere within the interfacial transition region. In the asymptotic theory
presented here, the precise location of the parent surface is unimportant so long as
it lies within the inner region, wherein steep material property and concomitant field
changes occur. (For more detail, see §8.) In addition, the parent surface is required

Phil. Trans. R. Soc. Lond. A (1993)
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170 G. M. Mavrovouniotis and H. Brenner

to be completely defined at the macroscale. Thus, the two principal curvatures x, and
Kk, of the surface must satisfy the scaling relation

kL =0(1) (x=1,2) (2.1)

at every point on the parent surface, even at the microscale. This condition will limit
the applicability of the subsequent theory to situations for which the curvature of
the interface is a strictly macroscale quantity, i.e. < O(L™).

Every point on the parent surface can be arbitrarily parametrized by a pair of
curvilinear coordinates (¢, ¢*) intrinsic to the surface. A point on the parent surface
will be defined as surface-fixed if its ¢* and ¢* values remain constant. A surface-
fixed point P, will be represented in physical space by the position vector x; which
originates at the space-fixed origin O and terminates at P,. This vector can be
determined uniquely for all times by the relation

xg = x,(q",¢* 1), (2.2)

where the time dependence arises from the dynamic nature of the macroscale
interface and/or the coordinate parametrization with respect to the space-fixed
origin. The velocity u of the surface-fixed point Py as seen by a space-fixed observer
is defined by the expression

0x
u= (ﬁ)ql,qz’ (2.3)

and will be termed the parent surface coordinate velocity.

Several other pertinent geometric quantities characterizing the parent surface
must be defined. In particular, the unit vector normal to the coordinate parent
surface will be denoted by n (which will be chosen to point in the direction for which
the vector set (a,, a,, n) is right-handed, with a, and a, respective vectors tangent to
the ¢'- and ¢*-coordinate curves and pointing in the direction of increasing ¢* values
(see Appendix A)), the surface idemfactor by /, = /—nn, and the surface gradient
operator by V,=/,'V (Brenner 1979). The (symmetric) curvature dyadic for the
parent surface is defined by the relation b = —V n; and the algebraically-signed
mean curvature H of the surface (which is positive when the mean curvature is
concave in the direction of n) has the form H = —3V,-n (Eliassen 1963).

In order to parametrize all of physical space at any instant in time, an additional
coordinate variable ¢3, say, is needed. The choice of the ¢*-coordinate curve (formed
by the intersection of the pair of surfaces on which ¢' and ¢? are each respectively
constant) is governed by the physical nature of the interfacial system. At the
microscale level of description, extremely large changes in the values of the
continuum fields characterizing the system may occur in the direction normal to the
parent surface. On the other hand, in all but pathological circumstances, only

1 Since the reference surface may move and deform within conventional three-dimensional physical space,
the concept of a surface-fixed point is somewhat arbitrary when viewed from physical space. For example,
consider the coordinate parametrization of the surface of a motionless spherical droplet. One could, arbitrarily,
define the spherical-coordinate reference surface to be undergoing solid-body rotation about its centre when
viewed by a space-fixed observer. Most surface-fixed points will then have a tangential velocity component
(even though the material points composing the sphere surface are, in fact, motionless) according to a space-
fixed observer. However, the normal velocity component of a surface-fixed point is determined by the
restriction that the reference surface must coincide with the macroscale interface. Thus, one way to
unambiguously define a surface-fixed point is to constrain its motion to be perpendicular to the surface. In the
interest of generality, however, such a constraint will not be imposed upon a surface-fixed point.

Phil. Trans. R. Soc. Lond. A (1993)
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relatively small changes in field variables occur in directions tangential to the
surface. To emphasize the importance of the normal direction, all ¢3-coordinate
curves will be constrained to follow a normal trajectory to the coordinate parent
surface, with ¢* increasing in the direction of n. The parent surface itself will be
defined by the equation ¢® = ¢}, where ¢} is a constant. Since both a macroscale
and a microscale observer must be able to produce an equivalent coordinate
parameterization, the ¢3-coordinate curves are required to be completely defined at
the macroscale in the sense that the curvature *x of all ¢*-coordinate curves must

satisfy the relation
[*k| L = O(1) (2.4)

at every point along the coordinate curve, even at the microscale. (For a parallel
surface parameterization (Eliassen 1963), *x = 0, thus satisfying (2.4) trivially.) (An
asterisk preceding a symbol will be used throughout this paper to distinguish
geometric variables defined at an arbitrary point (¢, ¢%, ¢®) in physical space from the
corresponding variables defined on the coordinate parent surface ¢* = ¢j = constant
for the same value of (¢, ¢?).) Each of the ¢*-coordinate surfaces, namely the family
of surfaces upon which ¢* = constant (and hence over which only ¢* and ¢* vary), will
be defined to be orthogonal to the ¢®-coordinate curves, thus creating a semi-
orthogonal coordinate system. Within the interfacial transition region, the two
principal curvatures *k, and *k, of each ¢*-coordinate surface are assumed to satisfy

the relation
[*c,| L =0(1) (ex=1,2) (2.5)

at every point on the ¢*-coordinate surface, even at the microscale.
Using this parameterization, any point in three-dimensional physical space can be
represented by the position vector

x=x(¢"9% ¢ t) = x(x,,¢°, 1) (2.6)

originating at the space-fixed origin O. The velocity of the surface-fixed coordinate
system at a point P as seen by a space-fixed observer is given by the expression

oy = ('c)_x) (2.7)
at quq2‘q3

and will be termed the coordinate velocity. We shall require that the coordinate
velocity *u be a macroscale quantity that changes only relatively slowly over
microscale distances; explicitly,

L Kyp —
(ﬁ)v u=0(1), (2.8)

where the scalar U is a characteristic velocity of the interfacial system.

As with the coordinate parent surface, some important geometric quantities
serving to characterize an arbitrary ¢®-coordinate surface must be defined, such
quantities being distinguished by an asterisk from the analogous quantities existing
on the parent surface. Thus, the unit vector normal to a ¢3-coordinate surface will be
denoted by *n, the ¢*-coordinate surface idemfactor by */, = /—*n*n, and the ¢*-
coordinate surface gradient operator by *V, = */,-V. The curvature dyadic *b for a
¢*-coordinate surface, defined by the relation

*h = — V¥, (2.9)
Phil. Trans. R. Soc. Lond. A (1993)
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172 G. M. Mavrovouniotis and H. Brenner

is symmetric. As such, it can be written in the canonical, ‘diagonalized’ form
*h = *k, Fe ) Teq, + *Ky Fe ) Fey, (2.10)

where *k, and *k, are the (algebraically-signed) principal curvatures of the ¢*-
coordinate surface (i.e. the eigenvalues of the curvature dyadic), and the unit vectors
*e ,, and *e, are the principal directions of curvature of the ¢*-coordinate surface
(i.e. the normalized eigenvectors of *b). In terms of the principal curvatures, the
algebraically-signed mean curvature *H of the ¢3-coordinate surface adopts the

classical form
def

*H =¥ kb = —1¥V_ kn = 1%k, + Fk,). (2.11)

The distance or arc length » along the ¢*-coordinate curve, as measured from the
parent surface (with n = 0 at the parent surface ¢*> = ¢3) in the direction of increasing
¢®, plays an important role in the subsequent perturbation analysis. A differential
element of arc length dn along the ¢3-coordinate curve is related to the differential
displacement d¢® by the expression (cf. (A 22))

dn = *h,dg®  (*hy > 0), (2.12)

where *hy(xg, ¢°,t) is the metrical coefficient (Happel & Brenner 1986, p. 476) for the
¢*-coordinate curve. Accordingly, the distance n can be determined by the integral
relation

q3
n= J *hy dg®. (2.13)

a

(To avoid circumlocution, we have deleted the prime that would normally have
appeared in the dummy variable ¢* occurring in the integrand of (2.13). This scheme
will be consistently followed throughout the subsequent text.) Because of the role
played in the subsequent theory by the intrinsic variable n, the coordinate variable
set (x,,¢%) appearing in the arguments of the various field variables will often be
replaced by the alternate variable set (x,, n). However, when replacing ¢* by =, it
must be borne in mind that surfaces of constant n are not necessarily equivalent to
surfaces of constant ¢®. (Surfaces of constant n are only equivalent to ¢*-coordinate
surfaces in circumstances for which *4, is independent of ¢!, ¢%, and ¢. Such conditions
hold for the special case of parallel surfaces (Eliassen 1963), for which *h, = 1.
This fact partially accounts for the special significance of the parallel-surface
parametrization.)

Since the ¢3-coordinate curve is defined such as to follow an orthogonal trajectory
to the ¢*-coordinate surfaces, the unit tangent vector to the ¢*-coordinate curve is
equivalent to *n, the unit normal to the ¢*-coordinate surface. Thus, the curvature
*k, as well as the principal unit normal vector *p of a ¢3-coordinate curve, may be
derived from the properties of *n via the relation (McConnell 1957, p. 159)

*n-(V*¥n) = 0¥n/0n = *« *p. (2.14)

A surface-fixed coordinate parametrization of physical space by the variables
(¢, 4% ¢*) will be unique at each point so long as the jacobian

7= (G GG e

Phil. Trans. R. Soc. Lond. A (1993)
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¢* - coordinate curves

— (¢ ¢° )

q* - coordinate surface

parent surface,

q* = q; = const.

Figure 3. ‘Projection’ of the differential elements d*4 and d*C onto the coordinate parent surface
along an ‘envelope’ determined by the ¢*-coordinate curves. Also shown are the unit normal vector
*n to the ¢®-coordinate surface, the unit tangent vector *f to the curve d*C, and the unit surface
vector *m = *¢ X *n, lying normal to the curve d*C in the tangent plant of the g¢*-coordinate
surface.

is non-vanishing at that point. The existence of the jacobian is assured (except
possibly at isolated points outside the interfacial region) by virtue of the fact that
each point in space is parametrized by some triplet of values (¢*,¢% ¢®). A unique
parameterization of physical space is strictly necessary only in the neighbourhood of
the interfacial transition region. As such, J can, in fact, vanish at points far from the
interfacial transition region without negating the subsequent theory. For situations
in which (2.1) holds, such a parameterization can always be constructed using
parallel surfaces (Eliassen 1963).

A differential areal element d*4 centred at a point (¢, ¢% ¢ lying upon an
arbitrary ¢3-coordinate surface can be written as (cf. (B 2) and (B 22))

d*4 = *M(x,,¢*) d4 (2.16)

in terms of the corresponding differential areal element dA centred at the point
(9", 9?) on the parent surface (figure 3). Here, d4 is determined by projecting the
element d*4 onto the parent surface along an envelope determined by the ¢3-
coordinate curves; moreover, M*(x,, ¢%) is the areal magnification factor given by

q3
*M = exp (- f 2*H*h, dqa). (2.17)

%

The analogous relationship governing the projection onto the parent surface of a
differential element of length d*C lying upon an arbitrary ¢*-coordinate surface is
given by the expression (cf. (B 24), (B 32) and (B 33))

d*C = *N(x,, ¢ dC. (2.18)

Here, d*C is the differential lineal element on the parent surface, found by projecting
the element d*C' onto the parent surface along lines corresponding to the ¢*-
coordinate curves (figure 3). In the above, N*(x;, ¢°) is the lineal magnification factor
given by

q° '
*N = exp (— J Ay (%) ¥y dq“), (2.19)
2

Phil. Trans. R. Soc. Lond. A (1993)
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with the scalar
*K oy (¥E) = *t¥t: b (2.20)

the normal curvature (McConnell 1957, p. 210) of the ¢*-coordinate surface in the
direction of *¢, the latter being the unit tangent vector to the curve d*C. (For
multiple vector operations, the nesting convention (Chapman & Cowling 1961) is
used. According to this convention, the operations are performed, inter alia, from the
inside outward, such that ab:cd = (b-c) (a*d), where a, b, ¢, and d are vectors.) Also
related to this curve is the unit vector *m = *¢ x *n, which is normal to d*C and lies
in the tangent plane of the ¢*-coordinate surface. This vector can be written as (cf.
(B 42))

q3
*m = m—f (*t*t+ *n*n) - (V*n) - *m*h, dg®. (2.21)
%

Since the (macroscale) interface moves and deforms with time, the instantaneous
parametrization x = x(x,,n,t) of physical space by the surface-fixed coordinate
system must be performed for each successive instant in time. This time-dependent
parametrization must be effected such that all pertinent geometric functions are
continuous throughout time. In order to simplify subsequent notion, derivatives
with respect to time holding the surface-fixed coordinates (¢*, ¢%, ¢*) constant will be
represented by the operator

def
-8— = (—a—) , (2.22)
ot ot PRI

which will be termed the coordinate-convected time derivative. This derivative can
be written as
) 0
—=|= *y- 2.2
5 (at)x+ uv, (2.23)

in terms of the space-fixed time derivative (0/0t),. On the parent surface ¢* = ¢3, the
coordinate-convected time derivative will be notationally represented by the symbol

def
5,72 , (2.24)
St at ql’q27 qg

which will be termed the coordinate-convected surface time derivative.

3. Singular perturbation analysis

Consider a generic, continuum, tensorial, microscale field 4= 4(x) (e.g. a
volumetric density of some extensive physical property) defined at every point x of
the system. (For simplicity and focus, the functional time dependence of 4, if any, has
been explicitly suppressed in its argument.) This field, which can equivalently be
represented as 4 = A(x,,n) in terms of the surface-fixed coordinate system, is
assumed to be a continuous function of position —in particular of the distance n —
throughout the entire domain occupied by the fluid. Within the two bulk-fluid
regions, and for a fixed value of x,, the field 4 will generally change only gradually
with n; however, within the interfacial transition region, 4 may undergo rapid
changes with n. (For example, if 4 represents the microscale mass density p in an
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Interfacial conservation equations. 1 175

immiscible oil-water system possessing significantly different bulk densities, p will
then be sensibly constant throughout each separate bulk phase. However, in
immediate proximity to the interface, p will change quite rapidly in magnitude with
n, from the bulk-phase density of oil to that of water.)

Upon using the respective characteristic lengths / and L of the interfacial and bulk-
fluid regions, the non-dimensional normal distance

def

fi = n/l, (3.1)

which is characteristic of microscale distances, and

def

n=mn/L = ef, (3.2)

which is characteristic of macroscale distances, can respectively be defined. In the
latter equation the characteristic length ratio

def

e=1/L<1 (3.3)

is assumed to satisfy the indicated inequality, and hence serve as a small (non-
negative) parameter in the subsequent perturbation analysis.

Within the interfacial region, the microscale field 4 may change significantly over
distances of O(l), i.e. with O(1) changes in #%. Explicitly, 04/3# may be of O(1) for
|#] = O(1). The functional form

A= Ax,, 7is¢) (3.4)

is thus a useful representation for those spatial positions x lying within the interfacial
transition region. In this form, changes, A4, in the value of 4 occurring over the
microscale distance |A%| = O(1) can be distinguished. Gradual changes in 4, if any,
occurring within the bulk-field regions will occur only over distances |Afl| = O(e™).
(Here and hereafter, the equivalence symbol appearing in the expression = O() is
used to indicate ‘exactly equal to the specific order’. In other words, the statement
f(e) = O[g(e)] as e 0 is true if there exist two positive numbers 4 and B, independent
of ¢, and an ¢, > 0 such that 4 | g(e) | < |f(e)| < B|g(e)| for all |¢| < ¢,. However, for the
statement f(e) = O[g(¢)] as e—0 to be true, the only constraint imposed upon f(e) is
that |f(e)] < Blg(e)| for all |¢| < e,.)

Sensible changes, if any, in the respective values of 4 within the two bulk-fluid
regions, || = O(1) lying on either side of the interfacial region, will occur only over
the much larger length scale |A%| = O(1). The functional form

A=A(xg, 7€) (3.5)

is thus more useful than (3.4) for those positions x lying within these bulk-fluid
regions. In this form, changes, A4, in 4 occurring over macroscale distances—
corresponding to |A7| = O(1) — can be distinguished. In general, any rapid changes in
A within the interfacial transition region will occur over distances characterized by
|A7| = O(¢). As €—0, such changes will appear to occur discontinuously when the
functional form (3.5) is used in a regular perturbation expansion scheme that utilizes
€ as the small perturbation parameter.

Expansion of the field 4 with respect to the small parameter ¢ is the first step
towards application of singular perturbation techniques to the interfacial system.
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176 Q. M. Mavrovouniotis and H. Brenner

Separate expansions must be performed within the interfacial transition region and
within the two bulk-fluid regions lying on either side of the latter. In the terminology
of singular perturbation theory (Nayfeh 1973), the interfacial region — defined by
|i| = O(1) — constitutes the inner region, whereas the two bulk-fluid regions — defined
by || = O(1) — constitute the outer regions.

The inner perturbation expansion of 4 in terms of the small parameter e, valid
within the interfacial transition region, is performed on the basis of the functional
form (3.4), keeping 7 (and x,) fixed:

Axg, 5 €) = Alxg, )+ Ag(Xs, 75 €), (3.6)
~ def
where AMxg,f) = lim A(x,,7;€) (3.7)
>0
fifixed

represents the leading-order term in this expansion. (For simplicity we depart here
from standard notation (Kevorkian & Cole 1981), which would require that what
here is called 4 be called 4,; that is, ordinarily one deals with the complete inner
expansion to all orders in €, namely

~

1( ;€)= A(xg fie; 6)
whence A(x,, 7€) = 1)+ f1(€) Ay (x5, 71) + fy(€) Ag(Xg, B) + ...,

where fi(€) >0 and fk+1/fk">0 as €0, and 4,_, =0(1) (k=1,2,3,...). Since,
however, these higher-order terms will not be addressed here, we can confound
A(x,, 7; €) with its leadmg order term, namely 4,(x,,7) (and simply refer to the latter
as A(x,, 7)). The remaining, higher-order terms are assigned to the remainder
function, A (x, 7 ;€).) All remaining higher-order terms in (3.6) are contained in the
‘remainder’ function 4y, which necessarily satisfies the constraint

lim Ay(x,, 7€) = 0. (3.8)
#fixed
The term 4 can be used to asymptotically approximate 4 within the inner region;
explicitly, .
A= A[1+o0(1)] for |n|=0(1). (3.9)

Perturbation expansions of 4 in the small parameter ¢, respectively valid within
each of the two outer regions, are performed on the basis of the functional form (3.5),
keeping 7 (and x;) fixed

Ax, 5 €) = Ay (X, ) + A (X, 7€) (7> 0), (3.10a)
Ay, 7036) = Ty, )+ Ayp(Xe W3 6) (< 0), (3.100)
wherein
_ def
A(xg,m) = lim A(x,,7m;¢) (> 0) (3.11a)
nfixed
_ def
and Ao(x,, @) = lim A(x,,m;€) (7 <0) (3.11b)

>0
nfixed
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Interfacial conservation equations. 1 177

constitute the leading-order terms in each of the respective expansions. All remaining
higher-order terms are embodied within the ‘remainder’ functions 4,5 and 4,5, which
are assumed to possess the property that

lim Ag(x,7;6)=0 (a=1,2). (3.12)

>0
7 tixed

The respective leading-order outer fields 4, and 4, can be used to approximate A
within the appropriate outer regions; explicitly,

A= A[1+o0(1)] for|a|> O() (7> 0), (3.13a)
A= A[1+0(1)] for|a|> O(e) (7<O0). (3.13b)
In general, the outer field 4 may be discontinuous across the interface; that is,

def
[4] = lim 4,(xg,7)— lim A,(x,, @) # 0 (3.14)
-0+ n—->0—
in general, with the double brackets [...] denoting the algebraically-signed ‘interfacial
jump’ occurring in the value of the outer field appearing within the enclosed
argument.

Throughout this paper, a tilde will consistently be used to denote inner variables
(both dependent and independent), and an overbar to denote outer variables. In
addition, only the lowest-order terms in ¢ will be retained.

Products of the dependent variables will appear in the subsequent microscale
theory. Since the limit of the product of two functions is equal to the product of the
limits (cf. Thomas & Finney 1980) so long as all limits exist, we can write

ab = ab, (3.15)

for the outer limit, where a(xs, m;e) and b(x,, 7; €) are arbitrary functions possessing
definable outer limits @ and b. Similarly, for the inner limit,

ab = ab, (3.16)

where a(x,, 7,¢) and b(x,,7;¢) are arbitrary functions possessing definable inner
limits @ and b.

Lying between the inner, interfacial transition region and the two outer, bulk-fluid
regions are two intermediate overlap regions, within which both the outer and inner
expansions are each assumed to be equally valid in an asymptotic sense. The
dimensionless normal distance,

def
h=¢"m=¢""R (0<r<1) (3.17)

with 7 some constant, is defined to be of O(1) within these intermediate regions. The
two limiting values bounding » correspond to # being identical with # (when r = 1)
and 7 (when r = 0). These limits on r may become tighter in specific applications,
depending upon the exact functional form of the field 4. Since both the outer and
inner expansions are assumed mutually valid within the two intermediate regions,
|#| = O(1), the pair of matching conditions

lim Z,(x, 7 =€) = lim A(x, @ =) (A >0) (3.180)
ifixed ifixed
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178 G. M. Mavrovouniotis and H. Brenner
and lim Zy(x,, 7 =€7h) = lim A(x, 7 =¢e ') (4<0) (3.18b)
i fied i fixbd

for the inner and outer expansions must hold for all x,. Clearly, as € ~0 with 7 fixed,
7 = O(¢") >+ 0 whereas 7 = O(¢" ') >+ 0.

(@) Order-of-magnitude scaling relations for important geometric properties

Table 1 provides a tabulation of order-of-magnitude values within each of the
three distinct microscale domains for the three dimensionless normal distances, as
derived from the three respective definitions (3.1), (3.2), and (3.17).

Order-of-magnitude values existing within the inner and intermediate regions can
now be determined for the relevant geometric parameters appearing in §2. Upon
utilizing (2.4), (2.5), (2.10), (2.11), and (2.14), the scaling relations

*bL = O(1), (3.19)
*[HL = O(1), (3.20)
*n-(V*n) L = O(1) (3.21)

are found to apply within both the inner and intermediate regions. Substitution of
(2.12) into (2.17) yields
7
) = exp [—eJ. 2(*HL) dﬁ]. (3.22)

0

Similarly, (2.19) adopts the form

*N = exp [—eJ. L*k y (*2) dﬁ}, (3.23)

0

where, from (2.20) and (3.19),
L*ky(*2) = *t*¢:(*bL) = O(1) (3.24)

within both the inner and intermediate regions. Perform a Taylor series expansion
of (3.22) and (3.23) and subsequently use the order-of-magnitude expressions (3.20)
and (3.24), together with the scalings cited in table 1, thereby obtaining the order
estimates

*M=14+0(), *N=1+0(e), (3.25a,b)

valid within the inner region, and
*M=14+0(), *N=1+0(), (3.26a, b)

valid within the two intermediate regions.
Similar estimates can be derived for *m. In this context, substitute (2.12) and (2.9)
into (2.21) to obtain

*m=m— ej (*t*t+ *n*n)- (— b+ *n*n-V*n) - *mL d7. (3.27)
0
Expand (3.27) via a Taylor series and employ the order-of-magnitude expressions
(3.19) and (3.21), together with the appropriate values cited in table 1. This scheme
furnishes the estimate
*m = m+0(e), (3.28)
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Table 1. Order-of-magnitude values for the scaled normal distances (0 <r < 1)

outer intermediate  inner

scaled normal distance  regions regions region
outer variable, 7 o(1) O(€") O(e)
intermediate variable, 7 O(e™) o(1) O(e'™)
inner variable, @ O(e™) O 1) o(1)

Table 2. Identification of generic variables *f and f for specific circumstances

*x,n) f(x,) o*f/om o*f/om is O(1) by ...
*n n (*<L) *p (2.4)
x/L x,/L  *n unit vector
*u/U u/U U (0*u/om) (2.8)

valid within the inner region, and
*m=m+0(e"), (3.29)

valid within the two intermediate regions.

One further expression relating the inner and outer limits of a generic macroscale
quantity can be established as follows. Let *f(xg, n) represent a dimensionless
quantity that is defined to be macroscale in the sense that

d*f/om = 0(1) (3.30)

everywhere, including the interfacial transition region. This function can be written
in the integral form

i =)+ | L ix, w560 3.31)
wherein ot
S(xg) = *f(x,,0) (3.32)

is the value of *f on the parent surface, n = 0. Integration of (3.31) using the order-
of-magnitude relation (3.30) yields

*f(xg,n) = f(xg) +7O(1) = f(x5) +70(€). (3.33)

Form the inner and outer llmlts, (3.7) and (3.11) respectively, of the above equation
to obtain the desired limiting expressions:

*f(x, 1) = f(xg) = lim *fi(x,,7) = lim *f;(x, 7). (3.34)
-0+ —->0—
This relation will prove important in the subsequent analysis of surface-excess
phenomena. Table 2 explicitly identifies *f as well as the other relevant variables
appearing in the above equations for three important geometric and kinematic
parameters.

4. Surface-excess properties

Imagine a macroscale experimentalist who sets about the task of investigating the
behaviour of a field variable 4 across a fluid interface (which field we will take to be
generic). Owing to the relatively coarse scale of resolution of the macroscale
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control volume V (bounded externally
by the closed surface 3V)

parent surface,

*Lz QA V2
n=0

1

Figure 4. Control volume used to define surface-excess properties. The parent surface (n = 0) lies
within the interfacial transition region, The control volume V =1V, @V, ® 4 straddles this region
and extends well into the two, ‘fully developed’ bulk-fluid regions. A ¢*-coordinate curve envelope
laterally bounds the control volume, Lying within the bulk-fluid regions are the upper (*4,) and
lower (*4,) end caps, formed by the intersection of ¢3-coordinate surfaces with the lateral ¢*-
coordinate curve envelope. The volumes V; and V, respectively represent the upper (n > 0) and
lower (n < 0) portions of the control volume.

experimental probe, the experimentalist is able to directly measure only the outer,
bulk-fluid fields (see figure 1a). This macroscale perspective (in contrast to the
microscale perspective depicted in figure 1b) leads her to conclude physically that 4
is given at each point x (%@ # 0) by its bulk-fluid value(s) 4, namely,

(A, (m>0),
A”l_{,@ (< 0). (1)

Such a macroscale observer will inevitably believe that each of these separate bulk
values 4 is valid right up to the two-dimensional parent surface, # = 0, though in
actuality we recognize these values to be strictly valid only for |7] > O(e). Rapid
changes, if any, occurring within the diffuse interfacial transition region themselves
cannot be explicitly observed by the macroscale observer; they will, however, be
implicitly relevant in determining the (macroscale) interfacial jump boundary
conditions to be imposed at @ = 0.

Differences existing between the macroscale and microscale views of the transport
phenomena can be formally reconciled by assigning macroscale surface-excess areal
densities A° and lineal flux densities ¢* of extensive physical properties to each point
x, of the two-dimensional parent surface (and at each instant of time in unsteady-
state circumstances), In this section, appropriate expressions for such two-
dimensional surface-excess densities will be developed in terms of the corresponding
three-dimensional volumetric and areal flux microscale density fields. The symbol ¢
is used in the following discussion to denote generic flux fields so as to avoid any
confusion with generic volumetric fields, hereafter represented by the symbol A.
However, all of the relations discussed thus far for the generic field 4 apply equally

‘well to ¢.

To develop expressions for the two-dimensional surface-excess densities, consider
a moving and deforming surface-fixed control volume V(t), defined as follows (figure
4). Choose an arbitrary areal element 4 lying on the coordinate parent surface n =
0; the closed curve bounding 4 will be termed 04. The ¢3-coordinate curves passing
through 04 (cf. figure 3) form the ‘sides’ of the control volume. Bounding the control
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volume at its top and bottom are upper and lower end ‘caps’, designated respectively
by *4, and *4,, which are conveniently chosen to be g*-coordinate surfaces that lie
well within their respective bulk-fluid regions. Thus, the closed surface 0V which
externally bounds V consists of *4,, *4,, and the ¢*-coordinate curve envelope
constituting the sides of the volume. The volumes V] and V, represent the two regions
of the control volume lying respectively above (n > 0) and below (n < 0) the parent
surface n = 0. Associated with these two volumes are the closed surfaces 0] and 0V,
which respectively bound V] and V, externally. The closed surface 0J] consists of the
two end caps *4, and A, together with sides determined by the ¢*-coordinate curve
envelope lying above the parent surface » = 0. Similarly, the closed surface 0V,
consists of the two end caps *4, and A, together with sides determined by the ¢*-
coordinate curve envelope lying below n = 0.

Let the continuous variable 4 designate the microscale volumetric density field of
some extensive property 2. The total amount, 4, of 2 contained within the control
volume V at any given time ¢ is given by the expression

def
A= f AdV. (4.2)
|4

A macroscale experimentalist whose instruments traverse the volume V will,
however, resolve and hence observe only the macroscale field 4 (cf. (4.1)), thereby

concluding that the total amount, 4, of 2 contained within the control volume (at
time ¢) is given rather by

A_=J IldV+J Izdvsf av. (43)
v, v, v

Such a macroscale observer will assign to the surface 4 any disparity that exists
between the two amounts A4 and A, thus obtaining
def _ _
A =lim(A—-A) = limJ [A(xg, n) —A(xg, ®)] AV (4.4)
>0 >0 JV

for the surface-excess amount, A%, of 2 assigned to the area 4 (at time t). Note that
we are here formally identifying the mathematical parent surface A with the physical
macroscale interface in the ¢—0 limit. A continuous, surface-excess areal density
field 4° can now be defined at each point x, on the interface by the relation

def
A5 = J A5(x,)dA. (4.5)
A

(As usual, the time dependence that would generally appear in the argument of 4° has
been explicitly suppressed.) The field 45 is a macroscale field, one whose functional
dependence upon the volumetric microscale field 4 can be established from (4.4) as
follows.

A differential volume element dV can be represented by the expression (cf. (A 24))

AV = d*4 dn, (4.6)

with d*4 a differential areal element on a ¢*-coordinate surface. Upon using the
projection relation (2.16), this becomes

AV = *M dA dn (4.7)
Phil. Trans. R. Soc. Lond. A (1993)
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in terms of the projected differential areal element dA lying on the interfacial parent
surface n = 0. Use of the above relation permits a separation of the volume integral
in (4.4) into a two-fold integration: (i) along the ¢*-coordinate curve; and (ii) over the
parent surface. Explicitly,

f (A—A)ydV = J h #M(xg, n) [A(x, n) — A(Xg, 7) ] d. (4.8)

n=—kL,

Here, the lengths *L,(x,) and *L,(x) respectively represent the distances separating
the parent surface 4 from the two end caps *4, and *4,, such distances being
measured along ¢3-coordinate curves (see figure 4). Recognizing that 4 can be chosen
arbitrarily, substitute (4.8) into (4.4) and use the definition (4.5) for 4%, so as to obtain

A5(x,) = lim . M (xg, n) [A(xg, n) — A(xg, 7)] dn. (4.9)

e>0 J n=—%L,

This expression may be simplified by decomposing the above integral into the sum
of three separate integrals, corresponding to respective contributions from the two
outer regions and the inner interfacial transition region:

n=3xL, _ n=—3x1I, _ n=3kI, _
25(x,) = lim U *M(A—2,)dn +J *M(A—2) dn+ f *M(A—7) dn] .
e>0 n=xI, n=—3%L, n=—3I,

(4.10)

Here, the lengths */, and *I, represent ‘distances’ separating the coordinate parent
surface from the respective upper and lower intermediate regions, such distances
being measured along ¢®-coordinate curves. The precise choice of these lengths is
immaterial (as is equally true of *L, and *L,) so long as each lies within the respective
domains of validity of both the inner and outer expansions (i.e. they both lie within
the intermediate regions above and below the parent surface).

Within the upper outer region, *I, <n < *L,, the representation (3.10a) is
applicable. This, together with the requirement (3.12) imposed upon 4,5, reduces the
first integral in (4.10) to the form

n=sxL, _ n=3kL, _
lim[f *M(l—ll)dn] = lim[f *Mllen] =0. (4.11)

e>0 n=:xI, >0 n=kI,

The final equality in the above expression is obtained by recognizing that *M remains
finite as ¢ 0, since *M is independent of e within each of the outer regions. Similarly,
in the lower outer region, *I, < —n < *L,, we obtain

n=—3xI, _ n=—3x1I, -
lim[f *M(l—lz)dn] = lim[J *MAog dn] =0. (4.12)

e—>0 n=—2%xL, >0 n=—%L,

Within the inner region, —*I, < n < *I,, equation (3.6) can be used to represent
A, thereby yielding

n=3kI, _ NI - n=kI -
th *M(z—z)dn]=1imU M (A — )dn+f *Mlen] (4.13)

>0 n=—3xI, >0 n=—3I, n=—=%I,

Phil. Trans. R. Soc. Lond. A (1993)
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for the last integral in (4.10). The condition (3.8) imposed upon Ay assures that

n=3I, -
1imU *Mlen] =0. (4.14)

>0 LJn=—x1,

Use of (3.1)—(3.3), (3.17), (3.25a), and (3.26a) permits one to write

Jim U*I M (xy, m) [A(%s, ) — Ak, 7)) dn}

>0 \Jn=—xI,
= lim {eL r= " [1+0(e")] [A(x,, ) — Ax,, 7 = €)] dﬁ}, (4.15)

with ¢, and ¢, positive numbers whose values may depend upon x,, but are
independent of e. Passage to the limit in the latter half of (4.15) furnishes the
asymptotic relation

n=3%1, - + 00 - =
lim [J *M(A— )dn} ~ eLJ [A(xg, 1) — A(Xg, 0)] A7, (4.16)
>0 n=—2I, fi=—00
wherein
B aet (lim 4,(xq, @) (A >0),
A(x,,0) = {"*‘” _ (4.17)
lim Ay(x,, ) (7% <0).
—->0—

Substitution of (4.11)—(4.14), and (4.16) into (4.10) thereby yields the operational

definition

+00

5(x,) ~ eLJ [A(x,, 7)) — Alx,, 0)] dAi (4.18)

i=—o0
for the surface-excess areal density field 4° in terms the indicated quadrature of the
respective inner field 4 and outer field limits 4(0+) of the exact volumetric density
field A(x) in proximity to the interface. In order for a macroscale description of the
interface to be valid, the above integral must be convergent. The matching
conditions (3.18) are necessary, but insufficient, for convergence. Hereafter, we will
assume that the surface-excess areal densities defined by (4.18) exist.

A similar expression for the surface-excess lineal flux density field ¢* can be derived
as follows from the continuous, microscale, areal flux density field ¢ of the extensive
property 2. The total efflux, @, of Z through the bounding surface 0V of the surface-
fixed control volume V is given by the expression

def

@ = J as- g, (4.19)
v

where d.S is a directed surface element on 0V, possessing the direction of the outward-
drawn normal to 0V (see figure 4). A macroscale experimentalist whose instruments
traverse the volume V will, however, resolve and hence observe only the macroscale
field @ (cf. (4.1)), thus concluding that the total efflux, @ of 2 through the surface of
the control volume is given rather by

& f as-p. (4.20)
v
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Such a macroscale observer will suppose that any discrepancy existing between the
exact and macroscale fluxes @ and @ is caused by an efflux of 2 along the interface,
thereby obtaining
def
& = lim (P—P) = limJ dS [p(x,,n)—@(x,, 7)) (4.21)
>0 e>0 J oV

for the surface-excess efflux, @*, of Z through the closed curve 04. Here again, we are
formally identifying the mathematical parent surface with the physical macroscale
interface in the ¢—0 limit. A continuous, surface-excess lineal flux-density field ¢*
can now be defined at every point x, (and, of course, every time ¢) by the expression

def

D" = J dC-¢5(x,), (4.22)
04

where dC = md(' is a directed line element on 04 possessing the direction of the
outward-drawn normal to 4 (see figure 4). The field ¢® is a macroscale field, one whose
functional dependence upon the three-dimensional areal flux ¢ can be established
from (4.21) as follows.

A differential element of surface d.S lying upon the sides of the control volume can

be represented as (cf. (A 28))
dS = *md*Cdn, (4.23)

with d*C a differential lineal element lying on the ¢*-coordinate surface, and *m the
unit vector normal to the curve d*C' and lying simultaneously in the tangent plane
to the ¢*-coordinate surface (see figure 3). Use of the projection relation (2.18) yields

dS = *m*NdCdn (4.24)

in terms of the projected differential lineal element dC lying on the parent surface
n = 0. The integral in (4.21) can be separated into two areal integrals over the end
caps *4, and *4,, together with an integral over the lateral ¢-coordinate curve
envelope. Use of (4.24) allows this latter integral to be partitioned into an integration
along the ¢3-coordinate curve, followed by an integration along the curve 0A4.
Performing these respective operations gives

f a8 (9—p) = J dOan*L‘ KN (x, m) *m [p(e, 1) — P 7)]
ov 04 n=—%L,

+J d*A*"'W—‘/_’l)—J d*4*n-(p—@,). (4.25)
*kA, *d,y

Since *4, and *4, lie respectively within the upper and lower outer regions, (3.10)
can be used to represent ¢ in the latter two integrals appearing above. This fact, in
conjunction with the requirement (3.12) imposed upon @5, yields

lim d*4*n-(9p—@,) = limJ d*4*n @, =0 (a=1,2). (4.26)
e~>0 J kA, >0 J kA4,
Upon recognizing that 4 may be chosen arbitrarily, subsequent substitution of (4.25)
and (4.26) into (4.21) and utilization of the definition (4.22) for ¢® eventually yields
n=>%xL,

m-¢%(x,) = lim *N(xg, n) *m- [@(xg, n) — P(xg, 7)] dn. (4.27)

e>0 J n=—xL,
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The preceding expression can be decomposed into three separate contributions,
corresponding to respective integrations over the two outer regions and the inner
interfacial transition region; explicitly,

n=3xL, n=—3x1I,
m:¢°(x,) =lim[f *N*m-(¢—¢_)l)dn+f *N*m- (p—@,)dn

>0 LJ n=xI, n=—x%L,

n=x%I,

+J *N¥m: (p—@) dn]. (4.28)
n=—:xI,

Equation (3.10a) may be used to represent ¢ within the upper outer region. This

representation, together with the requirement (3.12) demanded of @5, allows the

first integral appearing in (4.28) to be written as

n=3kL, n=3L,
1imU *N*m-(¢—¢1)dn]=th *N*m-q?len]=0. (4.29)

>0 n=kI, >0 n=kI,
In obtaining the final equality in the preceding expression, it has been recognized
that *N remains finite as ¢ >0, since *N is independent of ¢ within the two outer
regions. Similarly, upon using (3.10b) and (3.12), the second integral in (4.28) adopts
the form
n=—3%xI, n=—=xI,
lim [J *Nim: (9 —@,) dn] = lim [J *N*m: @op dn} =0. (4.30)

>0 n=—3%1L, >0 n=—2%L,

Equation (3.6) can be used to represent ¢ within the inner region, thereby
obtaining

n=3xI,
lim[f *N*m: (9o — @) dn}

e>0 n=—2xI,

n=sx1, n=sI,
= 1imU *Nm - (G— p) dn+f *N*m‘(ﬁRdn] (4.31)

e—~>0 n=—xI, n=—:x1,

for the last integral in (4.28). The condition (3.8) required of @ assures that

n=3xI;
lim U *N¥m- g, dn} =0. (4.32)

e—>0 n=—=x%xI,

Jointly, (3.1)—(3.3), (3.17), (3.25b), (3.26b), (3.28), and (3.29) permit one to write

lim {j N (s, 1) *m(g ) [§(s, ) — P )] dn}

>0 n=—=%xI,

=lim{eLJﬁ=61€~ [1+0(ef)][m‘+0(ef)]‘[¢(xs,ﬁ)—@(xs,n=eﬁ)]dﬁ}. (4.33)

1

€0 Ai=—cye’™

Passage to the limit in the right-hand side of the above equation thereby produces
the relation

1imUn-*]1 *N*m~(¢—¢)dn]~eLf+w m-[§(x,, %) —@(x,,0)| dii,  (4.34)

>0 n=—x1I, fA=—c0
in which the notation of (4.17) (with 4 = ¢) has been used.
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186 G. M. Mavrovouniotis and H. Brenner
Introduce (4.29)-(4.32), and (4.34) into (4.28) to obtain

m-@°(x,) ~ el J+w m:[§(xs, 1) — @(xg,0)] d7. (4.35)

Use of the identity m = m- [, yields the operational definitiont

+ 00

P(x5) ~ GLJ I [9(xs, ) — @(x,0)] 72, (4.36)

fi=—00

for the surface-excess lineal flux density field ¢® in terms of the inner and outer limits
of the microscale areal density field ¢(x). This integral must be convergent in order
for a macroscale description of the interface to the valid. Similarly to (4.18), it will
hereafter be assumed that the surface-excess flux densities defined by (4.36) exist.

The respective integral expressions (4.18) and (4.36) for the surface-excess density
fields 4% and ¢* are each multiplied by the smaller parameter ¢. Thus, except for those
situations in which the three-dimensional microscale continuum fields 4 or ¢ attain
large values, of O(¢7!), within the interfacial transition region, these surface-excess
quantities will generally be vanishingly small. Large values of 4 or ¢ within the
interfacial transition region may be expected to exist whenever surface-active
substances are adsorbed at the interface. Thus, the surface-excess densities 4° and ¢*
may generally be expected to be sensible when the interface contains adsorbed
surfactants. Section 8 discusses these issues in more detail.

5. Generic conservation equations

Let w = w(x,t), which may be a scalar, vector, or tensor field, represent the
generic, intensive, microscale volumetric density of some extensive physical property
2 (e.g. mass, linear momentum, etc.) of the continuum. The total amount, ¥, of 2
instantaneously contained within a moving and deforming surface-fixed control
volume V (cf. figure 4) is given by (4.2) (with the choice 4 = y). Here, the control
volume V' is not necessarily constrained to straddle the interfacial transition region,
as it was for the case of determining surface-excess quantities.

The generic ‘conservation’ (balance) equation for the total amount of 2 contained
within V' is given by the expression (Moeckel 1975)

Ay/di+d =1+2Z, (5.1)

where @ represents the total extensive efflux (per unit time) of 2 out of V through
the bounding surface 0V of the control volume, I7 is the time-rate of production of

1 Since the arbitrary vector m lies only in the tangent plane, the actual solution of (4.35) is

+00
9°(x;) ~ GLJ [#(x,, 71) — @(x,, 0)] A7+ nF,

fi==—00
in which F is an arbitrary three-dimensional tensor whose rank is one less than that of ¢°. In subsequent
applications, it is only the directional quantity /- ¢°, rather than ¢° by itself, that appears. We have anticipated
this by suppressing the nF term in the above via use of the projection operator /, on the left-hand side of the
integrand appearing in (4.36). Note that whereas n- ¢* = 0 identically with the choice (4.36), this does not imply
that the equation ¢*-n = 0 is generally true for situations in which the tensorial rank of ¢ is greater than unity.
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Interfacial conservation equations. 1 187

& within the control volume by internal sources, and Z is the rate of supply of 2 to
the interior of V' via the action of external sources (see table 3 for examples). Both
IT and Z can be expressed in terms of their respective microscale volumetric densities
n and { via (4.2). Similarly, @ can be expressed in terms of the corresponding
microscale areal tensor flux density ¢ via (4.19). (The tensorial rank of the flux
density ¢ is always one rank greater than that of the volumetric density w of the
conserved extensive property # being transported.) Thus, (5.1) may be written in the
form

4 y/dV+f dS'¢=J (r+&)dV. (5.2)
dt )y v v
According to the Reynolds’ transport theorem,
d Sy N

- =] |==£ . ) 3

7 Vy/dV L[&HV u)lll]dV (5.3)

(This theorem is commonly written for a material control volume in which the mass-
average fluid velocity vector v appears in place of *u. However, the general proof of
this theorem (Aris 1962, p. 85) does not depend upon the material nature of the
control volume.)

Moreover, according to the divergence theorem,

f dS-q)=f V-pdV. (5.4)
%4 |4

Substitute (5.3) and (5.4) into (5.2), and invoke the arbitrary nature of the control
volume V together with the continuous nature of each microscale field, to obtain the
fundamental generic conservation equation

Sw/dt+ (V- *u)w+V-p=n+{ (5.5)

governing the spatio-temporal transport of the property £.
In general, the flux
9=@-"uy+J, (5.6)

arises from two distinct physical phenomena, these respectively being the convective
flux (v—*u)y and the molecular (or diffusive) flux J of the property 2 through a
surface-fixed areal element. Here, v is the mass-average velocity vector of a material
fluid element. Use of (5.6), together with the relation (2.23) for the time derivative
expressed in terms of space-fixed coordinates, allows the generic conservation
equation (5.5) to be written in the classical generic eulerian form (Bird et al. 1960)

(aa—"t’) +V-(oy)+V-J=m+L. (5:7)

(@) Macroscale bulk-fluid equations

The generic conservation equation for the macroscale volumetric density ¥ is
found by taking the outer limit of (5.5):

lim [85—'1’+(V~*u)a//+V-(p—n—C] =0. (5.8)

>0
nfixed
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188 G. M. Mavrovouniotis and H. Brenner

Substitute (3.10) and (3.15) into (5.8) and utilize the fact that since *u is a macroscale
quantity (cf. (2.8)) it necessarily satisfies the condition *& = *u. This yields

[%HV*M%W-@—@—Q]

+ lim [Syg;‘RHV‘*u)'/7aR+V'¢7aR—ﬁaR— ‘aR] =0 (¢=1,2), (5.9)

afiea
which holds strictly only for those points lying within the outer (and intermediate)
regions, namely |7] > O(¢"). However, as ¢—0, the preceding constraint imposed
upon # reduces to |7] > 0.

Further progress requires additional physical assumptions regarding the math-
ematical nature of the generic densities y and ¢ for the particular class of physical
problems of interest to us here. In particular, it will be supposed that both the
temporal and spatial differential operations can be interchanged with the outer limit
operation such that, with use of (3.12), we obtain

lim YR _ g (q =19 (5.10)
o Ot
nfixed
and lim Vg =0 (¢=1,2). (5.11)
>0
nfixed

These assumptions impose no significant constraints and serve to eliminate
pathological density functions. In particular, if 4, (with 4 = w, @) can be written in
the form - ) B B

}’aR(xs’ n, t; 6) =fa1(€) Aach(xs’ n, t) +foc2(€) )’aRz(xw n, t) +...

then (5.10) and (5.11) will hold automatically. Since rapid changes in 4 occur only
with respect to the variable @, the main restriction imposed upon the continuum
fields by (5.11) arises due to the constraint imposed upon the normal gradient
a¢aR/aﬁ"
Substitution of (3.12), (5.10), and (5.11) into (5.9) gives
dw/dt+ (V- *u)y+V-pg=a+{ (7 #0). (5.12)

This equation is separately valid within each of the two macroscale bulk-fluid phases,
7> 0 and 7 < 0, although not at the interface 7 = 0, across which any one or more
of the macroscale fields (denoted by an overbar) may be discontinuous. Application
of the product relation (3.15) to (5.6) yields
=0 *u)g+J. (5.13)
Thus, the generic macroscale conservation equation governing ¥ can be written in
the canonical form
dw/dt+ (v—*u) Vu+(V-o)w+V-J=m+ (1 +#0). (5.14)

(b) Macroscale interfacial equation

The macroscale boundary condition imposed upon the two bulk fluids at their
common interface 7 = 0 is furnished by the interfacial conservation equation now to
be derived. Consider a surface-fixed control volume V straddling the interfacial
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Interfacial conservation equations. I 189

transition region (figure 4). The generic conservation equation governing the total
amount of 2 contained within such a surface-fixed control volume, as observed by
a microscale observer, is given by (5.2). A macroscale observer will, however,
conclude from (5.12) that the relationships

dS-qi“:f @®,A+EC,)dV (x=1,2) (5.15)
| Vv

a a

d

a),, v, dV+ L
hold separately within the two distinet regions V; and V, (bounded externally by the
closed surfaces 0V, and 0V, respectively). In order to establish the macroscale jump
boundary condition that such an observer would impose at the interface to effect
closure, the macroscale balance equations (5.15) are subtracted from the exact,
microscale equation (5.2), and the macroscale limit subsequently taken; explicitly,

lim{[ij a//dV+f dS-(p—f (1t+Z_.‘)dV]
>0 dt |4 e |4

—[ﬂf '/7dV+f dS'@—f ®+¢)d ]}=0. (5.16)
dt Vi@V, WL DI, V,®V,

The preceding expression can be simplified by separately examining the
comparable micro- and macroscale terms appearing in the above integrands.
Towards this goal, use (4.4) and (4.5), and recall that V, @ V, = V, so as to transform
the volumetric terms containing w, 7z, and ¢ into relations involving their surface-
excess areal density counterparts, y®, n*, and {®, via the generic expression

lim | [A(xg,n)—A(xg, ®)]dV = f AS(xg)dA. (6.17)
e—~>0 JV A

The applicability of the generic equation (5.17) to the function y depends upon the

validity of the assumption

lim §—"8’;—R=0 (@=1,2), (5.18)

afixed
namely that the time-derivative and e¢—0 limit operations can be interchanged
within the inner region. Upon using (4.21) and (4.22), those integrals in (5.16)
containing the flux field ¢ can be written in the form

lim[f dS'q)(xS,n)—J dS‘@(xs,ﬁ)]
0 LJov VL@V,
=L dC‘¢S(xs)+LdAn'[¢1(xs,0)—¢z(xs,0)], (5.19)
A

involving the surface-excess lineal flux density ¢®*. The last integral on the right-hand
side arises because 4 is a subset of both 0V, and 0V, but not of 0V. Use of the above
results, together with the definition (3.14) of the jump discontinuity, permits (5.16)
to be written as

d S
a—t‘ AW (xs)d“l_'_Jv

04

dC'¢S(xs)+J n‘[[(F]IdA—f [75(x) +E%(x,)]d4 = 0. (5.20)
A A
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190 G. M. Mavrovouniotis and H. Brenner
According to the surface analog of Reynolds’ transport theorem (Eliassen 1963),

d < S, y° s
— = : . 21
G] wat= [ B 5.21)
Moreover, according to the divergence theorem for a surface (Eliassen 1963; Aris
1962),

f dC-¢S=f V- (I, ¢%)dA. (5.22)
04 A

(Equation (5.22) is a generic equation that applies for any tensor field ¢%, rather than
being limited to the quantity ¢* defined in (4.36). However, since (5.22) will only be
used for the specific integrand ¢® defined in (4.36), one could strictly suppress the /,
appearing in the right-hand side of (5.22) as being redundant; that is, ¢* = /- ¢°.
Nevertheless, this redundancy will be retained.)

As the choice of the areal domain 4 is arbitrary, introduction of (5.21) and (5.22)
into (5.20) furnishes the pointwise interfacial conservation equation

sy /0t + (Vs u) y+ Vg (s ¢°) —m* =L = —n-[g], (5.23)

valid at every point x, of the two-dimensional macroscale interface, located at 7 =
0. This equation, which relates the surface-excess density fields on the left to the
‘jump’ (3.14) in the generally discontinuous macroscale bulk-fluid areal flux density
@ across the interface, constitutes the interfacial boundary condition imposed upon @
at the (non-material) macroscale interface, 7 = 0. All fields appearing in (5.23) are
macroscale fields; thus, this interfacial equation is to be understood as describing
strictly macroscale phenomena, in the same sense (and at the same macroscale level
of description) as (5.12).

An alternate form of (5.23) can be developed in light of the general expression (5.6)
for ¢. Application of the product relation (3.16), together with the expression (3.34)
for *#&, permits (5.6) to be written as

§=@—u)i+J. (5.24)

Substitute this expression, together with (5.13), into (4.36) and use (3.34) for *u
to obtain

l;-9°= (I, vp)*— 1 uys+ 1 J°. (5.25)
Use of this relation in (5.23) yields the canonical form
ésEstzs-—u‘\7Sn//s—2Hn-ut//s+Vs-(Is‘m//)s+\7s-(I$~JS)—11'S—Cs =—n[(T—uwyg+J]
(5.26)
of the generic conservation equation governing interfacial transport, applicable to
both material and nonmaterial interfaces. In this equation, H = —1V,n is the mean

curvature of the macroscale interface.
For material interfaces, the mass-average velocity vector v satisfies the relation

n: lim 7,(x,,#) = n* lim 7,(x,, %) = nu, (5.27)
>0+ n—->0—

whence only the macroscale molecular flux term J will appear in the jump boundary
condition.
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Interfacial conservation equations. I 191

Table 3. Identification of generic fields

(In this table, p = mass density, v = mass-average velocity vector, P = stress dyadic, F = external
body-force density vector, a = internal angular momentum pseudovector, C = couple stress
pseudodyadic, G = external body-couple density pseudovector, p, = species mass density, j, =
species diffusive mass flux vector (measured relative to v), and R, = chemical reaction rate of
production of species ¢.)

volumetric areal volumetric volumetric
property molecular internal external

physical quantity density flux, production supply

conserved, 2 w J rate, & rate, {
mass p 0 0 0
linear momentum pv —P 0 F

angular momentum x X (pv) +pa Pxx—C 0 xxF+G
mass of species ¢ 1 Ji R, 0

(¢) Specific physical choices for the density functions

In order to model any specific physical system, the extensive physical property to
be considered (e.g. mass, momentum, species mass, etc.), as well as the appropriate
continuum density fields, represented by the abstract generic symbols in our
conservation equations, must be identified. For several physical situations, table 3
provides an identification of the generic mathematical field quantities appearing in
the pertinent conservation equations. 4

Having identified the physical microscale density fields, constitutive equations for
J, m, and { are needed for each physical transport process. These microscale relations
will ultimately give rise to corresponding macroscale conservation and constitutive
equations governing the respective bulk-phase and interfacial transport processes.
The macroscale conservation equations for the two, outer, bulk-fluid regions are
determined by (5.14), with macroscale densities defined in (3.11). Because of the
separability condition (3.15), the bulk-fluid equations will reduce to the familiar
conservation and constitutive equations for three-dimensional fluids, albeit charac-
terized by different phenomenological coefficients on either side of the interface.
Owing to the familiar nature of these bulk-fluid transport equations (Bird et al. 1960),
attention need only be focused on developing the interfacial transport equations.

Equation (5.26) constitutes the generic macroscale interfacial conservation
equation, with surface-excess fields determined from the underlying microscale
densities via (4.18) and (4.36). The latter integral representations of these surface-
excess fields ultimately furnish explicit expressions for the macroscale interfacial
constitutive equations and concomitant interfacial phenomenological properties
characterizing physical systems of the type described in table 3. The remainder of
this paper, as well as Part IT (the following paper), will be devoted to an examination
of macroscale interfacial relations using the asymptotic theory provided herein.

6. Interfacial properties in the presence of interphase mass transfer

When mass transfer occurs across the interface, the concept of an interfacial
(material) property necessarily becomes ambiguous in any purely macroscale
description (Scriven 1960; Slattery 1964 a) of the phenomenon (see the discussion in
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192 G. M. Mavrovouniotis and H. Brenner

§1). (In such classical macroscale theories, entities such as y* are regarded as
primitive, axiomatic, continuum-mechanical fields possessing a physically-based
existence, and hence not requiring any finer-scale interpretation; as such, these
theories fail to properly distinguish between ‘surface’ and ‘surface-excess’
quantities.) This inherent ambiguity arises from the fact that the phase interface is
not necessarily composed of material points. The three-dimensional microscale
approach of this paper resolves this macroscale issue, since surface-excess properties
are herein defined independently of the existence of material interfacial elements.
However, one question still arises regarding the nature of the interfacial properties.
Is it possible to reconcile the ‘material” interfacial densities appearing in purely
classical macroscale theories (Scriven 1960 ; Slattery 1964 ) with the surface-excess
properties derived from our underlying microscale theory for systems undergoing
interphase mass transport? For example, strictly macroscale theories generally
assume (by analogy with comparable three-dimensional phenomena) that the
interfacial linear momentum density is identified with the product pV of the purely
macroscale field variables p* and V, where p® is a surface mass density and V is the
material (i.e. mass-average) surface-velocity vector of the fictitious surface particles.
(Some of the confusion that results when a two-dimensional surface approach is used
to treat systems undergoing interphase mass transport can be seen by the fact that
Moeckel (1975) suggests that n- V # n-u in some circumstances, whereas Deemer &
Slattery (1978) assume that n- V' = n-u in all circumstances.)

The question of the existence of such an apparent ‘material’ interfacial velocity
V in systems undergoing interphase mass transport can be resolved by using our
asymptotic theory of interfacial phenomena to establish whether the implicitly
assumed fundamental relation

(pv)* = p*V (6.1)

is valid and, if so, derive an appropriate expression for the macroscale interfacial
vector field ¥(x;) in terms of more fundamental microscale fields. To investigate the
existence of such a vector field V, consider the microscale continuity equation

dp/dt+(v—"*u)-Vp+(V-v)p =0, (6.2)

derived from (5.5) with the conserved property in table 3 being the mass. Within the
interfacial transition region, the above relation may be written in the form

op v op

k) -k 4 k. O LI=2E _gy) .k *Y . =0. )

(v—*u) naﬁ+ n Gﬁp+€ [6t+(v u) *Vyp+(*Vyv)p| =0 (6.3)
Suppose that the two bulk fluid phases possess different bulk densities 5, and f,.

In such situations, the microscale mass density field p will vary sharply within the

interfacial region in the direction normal to the macroscale interface; thus, the

scaling

1\ 9 _
(}(-7)% = 0(1) (6.4)

is appropriate within the interfacial transition region. It will further be assumed that
tangential gradients, if any, of the microscale fields p and v are everywhere of
macroscale order; explicitly,

(L/p)*Vip=0(1), and (L/U)*V o= 0(1). (6.5a, b)
Phil. Trans. R. Soc. Lond. A (1993)
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The above assumptions encompass most conceivable nonpathological physical
situations and, hence, do not unduly restrict the physical applicability of our final
results. As a consequence of the preceding assumptions, it follows from (6.3) that

1)0v
(ﬁ)% =0(1) (6.6)
within the interfacial transition region. Recourse to (2.8), (2.5), and (2.14) yields
1\0*u €\0*u 0*n o*n
('Z—])%— = ('[—])%' = 0(6), and Fﬁ— = 6% = 0(6) (6.70/, b)

Substitution of the above order-of-magnitude relations into (6.3) furnishes the
relation

0 Kgp) . ¥ -
a5 (0= "u) *np] = O(e). (6.8)

Integrate the latter expression to obtain
(v—*u) *np = c(xg) + O(€"), (6.9)

valid within the interfacial transition region. Here, the function ¢(x;) is independent
of n. Form the limit of the above equation as ¢—0 (with 7 fixed) to obtain

[8(x5, ) — u(x5)] - n(x5) (X5, ) = (), (6.10)

where (3.34) (with *f = *u, *n) has been used. Matching conditions (3.18) thus permit
us to conclude that

[0,(%5, 0) — ()] 1(X5) P (X5, 0) = () (= 1,2). (6.11)
Subtraction of the latter from (6.10) thereby yields
p() e 8(7) — p(0) m* 8(0) = [H(7) — p(0)] m*u, (6.12)

in which the explicit dependence of the indicated arguments upon x, has been
suppressed.
Consider those interfacial systems for which the tangential component,

v, (6.13)

of the microscale velocity vector is a macroscale quantity, thus obeying the scaling
relation

1\ov,
(5)% = 0(1). (6.14)

The above relation enables the generic proof embodied in (3.30)—(3.34) to be applied
specifically to vy (with *f= v (x,,n) and f=vyx,,0)), thereby furnishing the
equalities

U5(xs, 1) = v(X,,0) = lim (), (x5, 7) = lim (), (x5, 7). (6.15)

>0+ n->0—
The surface-excess linear momentum density is given by (4.18) with 4 = pv as

+ 00

(pv)* ~ eLJ [pV(x,, 7)) — pv(x4, 0)] dfi. (6.16)

fi=—00

Phil. Trans. R. Soc. Lond. A (1993)
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Table 4. Definitions of important velocity fields

symbol definition location in text®

u = (0x,/0t)a » parent surface coordinate velocity vector: (2.3), figure 2
velocity of the parent surface as seen by a
space-fixed observer

*u = (0x/0t)p 2 g coordinate velocity vector: velocity of the (2.7), figure 2
surface-fixed coordinate system as seen by
a space-fixed observer

v mass-average velocity vector of a material follows (5.6)
fluid element

v, =* v tangential component of v on coordinate (6.13)
surface

V=u0v(0)+nnu apparent ‘material’ interfacial velocity vector (6.1) and (6.19)

v ‘bulk-phase’ mass-average velocity vector; see (3.11a, b) for
normal component generally discontinuous generic definition

across interface

* The word ‘location’ refers to the place in the text at which the symbol is first defined or used.

Decompose v into its normal and tangential components and use (3.15), (3.16) and
(3.34) (*f= *n) to obtain

+00

(pv)* ~ GLJ

n[p(#) n 8() — p(0) n- v(0)] A7t

tel | A 8,(7)—pl0) ,(0)] A, (6.17)

where, again, the explicit dependence of the arguments upon x, has been suppressed.
Substitution of (6.12) and (6.15) into the above eventually yields the fundamental
relation (6.1), wherein

+00

PHx,) ~ eLf [5(x,, ) — Plix,, 0)] dA (6.18)

i=—00
is the surface-excess mass density, defined by (4.18) with 4 = p, and
Vixs) = vy(x;, 0) +n(x,) n(x;)  u(x;) (6.19)

is the apparent material interfacial velocity vector. Similarly, the implicitly assumed
identity

Is- (pvo)* =1 (p* VV) (6.20)

for the nonlinear convective inertial term in the dynamical equations of interfacial

motion may likewise be shown to be valid under the circumstances described above.

The appellation ‘material interfacial velocity’ applied to the vector in (6.19) is

reasonably apt. Among other things, it satisfies the necessary kinematical constraint

nV=nu (6.21)

imposed upon its normal component. Additionally, in the dynamical context of (6.1),
V is appropriately related to the surface-excess flux of linear momentum density.
Finally, this definition of V is equivalent to that obtained for material (rather than
phase) interfaces.
Table 4 conveniently summarizes the various velocity fields used in the text.
Our definition (6.19) of the apparent material interfacial velocity V for systems

Phil. Trans. R. Soc. Lond. A (1993)
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undergoing interphase mass transfer is equivalent to that assumed by Deemer &
Slattery (1978). Here, however, we have been able to prove that such an interfacial
velocity can be defined, i.e. that it exists, at least in an asymptotic sense for the
conditions outlined above.

7. Physically-specific interfacial conservation equations

In this section we simplify the interfacial conservation equations for those physical
properties described in table 3, based upon hypotheses which hold in most non-
pathological physical situations. However, in order to keep the present contribution
as broadly applicable as possible, discussion of the development of macroscale
interfacial constitutive equations is postponed until Part II (following paper).

(@) Conservation of mass

With the assignations given in table 3, the interfacial conservation equation (5.26)
for the mass density (y = p) can be written as

dsp° _
ot

If (6.1) and (6.21) hold, this expression simplifies to

u-Vyp*—2Hn up®*+ V- (I, vp)y*+n-[(v—u) p] = 0. (7.1)

O p° ~ -
et (V) Vg + (Vs V) p* 4 [(0—u) p = 0, (7.2)
in agreement with Deemer & Slattery (1978).
As discussed in §8, the surface-excess mass density p® appearing in the above
equations may normally be neglected as being of O(¢) since p is, in most physical
circumstances, of O(1) throughout the entire interfacial region. Thus, with

P =0, (7.3)

the surface-excess mass conservation equation (7.2) for non-material interfaces
reduces to
n-[(v—u)p] =0, (7.4)
in agreement with the microscale results of (6.11). For the case of a material
interface, (5.27) necessarily holds, whence (7.4) is automatically satisfied.
(b) Conservation of linear momentum
Following the identifications furnished in table 3, the interfacial conservation

equation (5.26) for the linear momentum density (y = pv) adopts the form

§S—(—gf——u ‘Vi(pv)*—2Hn u(pv)*+ V- (I vop)®
=V Iy P —F+n-[(v—u)pv—P]=0. (7.5)

In circumstances for which (6.1), (6.20) and (6.21) are applicable, the above
expression may be simplified with the help of (7.2) to give

/05[855—;/+(V—u)-VS V]—VS'(IS‘PS)—FS+n-[(TJ—u) (@—V)pl—n-[P] =0, (7.6)
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in agreement with Deemer & Slattery (1978). On the further hypothesis that (7.3) is
applicable, (7.6) becomes

V. (I,-P)+F = n-[(5—u) pv —P]. (7.7)

Applications of the latter to specific dynamical problems require the specification of
constitutive equations for the underlying microscale densities F and P. Their
specification will ultimately enable a rational derivation of the quantities F* and P*
(as well as P).

(¢) Comservation of angular momentum

With the choice of ¢ = x x (pv) + pa for the angular momentum density (table 3)
and the use of (7.5) to simplify the resulting expression, (5.26) becomes

ds(pa)®

5/ u-Vy(pa)*—2Hn u(pa)*+ V- (I vap)®+u-nn x (pv)*

+[(l,-v) x vpP—P5— V- (I,-C)—G+n-[(v—u)pa—C] =0, (7.8)
with
Ps =—¢: (I, P (7.9)

the vector invariant (Gibbs & Wilson 1960) of the surface stress dyadic (which is
related to the antisymmetric portion, if any, of the latter). Here, (2.3), (3.34) (with
*f=x/L), (Ab5), and table 5 (definition of /) have been used, together with the
generic dyadic identity

-V (D xx,) =x,x(Vy-D)+ D5, (7.10)

in which D is an arbitrary dyadic.
In circumstances for which (6.1), (6.15), (6.20) and (6.21) hold, (7.8) may be
simplified to yield
dy(pa)®

24 (V=) Vi (pa)* + (Vs V) (pa)* — P,

—V, (I, C)—G*+n[(v—u)pa—C] =0. (7.11)

Additionally, if the nature of the intrinsic angular momentum density a is such that
(see §8 for the appropriate conditions)

(pa)y =0, (7.12)
then (7.11) reduces to the form

Vi (I C)+ P+ G = n-[(v—u) pa— CJ. (7.13)

In order to apply this conservation equation to a specific dynamical system,
constitutive equations for the microscale densities G and C are needed; these
ultimately enable a rational derivation of the quantities G° and C* (as well as C).
In the absence of microscale external body couples (G = 0), and in circumstances
for which both the microscale internal angular momentum density vector a and the
couple stress tensor C are constants (including, of course, being identically zero) with
respect to position and time, it follows from (4.18) and (4.36) that G° = C®* = 0, and
[C] = [a] = 0 from (3.11). Substitution of these results, together with (7.4), into
(7.13) yields
P =0. (7.14)

Phil. Trans. R. Soc. Lond. A (1993)
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The leads via the identity PS— (P*)" = &' P, to the conclusion that the surface-excess
pressure tensor must be symmetric; explicitly,

Ps = (P)'. (7.15)

(d) Conservation of species

The interfacial conservation equation (5.26) for the species mass density
(corresponding to the choice y = p,) can be written in the form

8, pi
5t

—uVypi—2Hn up; + V- (I vp,)*

+Vs U i) —Ri+n-[(0—u) p;+jl = 0. (7.16)
If (6.15) holds, this equation becomes
3

L (0—u) Vg3V, [04(%,, 0)+ - ul)

+Vo g ) —Ri+n-[(—u) p;+j] = 0. (7.17)

Surface-active substances, which tend to accumulate in the interfacial transition
region, will possess relatively large microscale concentrations within this region; as
such, the surface-excess density pj of such species will be non-zero in the interfacial
boundary condition (7.17). Conversely (in macroscale parlance), substances which
tend not to be adsorbed at the interface will possess negligible values of p§, and will
thus be governed by the expression

Vs.(ls'jzs')_Rg"}-n'I[(I_J_u)pi'i'jz']] =0. (7.18)

To apply any of the preceding equations of this subsection to a specific physical
system, constitutive equations for the microscale densities B, and j, are needed,
eventually enabling a rational derivation of the macroscale quantities RS, j3, and j
appearing therein.

8. Discussion
(@) Surface-excess quantities

Since the operational expressions (4.18) and (4.36) for computing the surface-
excess fields 4% and ¢ from the microscale values are multiplied by the small
parameter ¢, non-negligible values of 4* and ¢* will arise only when |4, |/]4] > 1 and
|Pmaxl/1@] > 1 respectively. For example, consider the pair of postulated field
behaviours depicted in figure 5. If the form of the microscale density field 4 is such
that the latter does not attain a large maximum value within the interfacial
transition region (as illustrated by curve A then the derived surface-excess field will
be of O(¢), whence it may be concluded that A5 =0 for all practical purposes.
Physical examples of fields typified by curve A, and hence possessing vanishing
surface-excess densities, are the total mass density p and the mass density p; of
conventional, surface-inactive, solutes. On the other hand, if 4 does attain a large
maximum value within the interfacial region, as illustrated by curve B, the surface-
excess field will be sensible; i.e. 43 # 0. One example of such a field is the mass
density p, of a surface-active species i; thus, p§ > 0 for surface-active solutes.

Large magnitudes of the microscale continuum field variables 4 and/or ¢ generally
arise in dynamical and energetic transport processes only when surface-active

Phil. Trans. R. Soc. Lond. A (1993)
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nA
curve B
I — T
0 / A
curve A

Figure 5. Schematic showing the two main types of behaviour for a microscale field 4 = A(x,, n)
within the diffuse interfacial region. Curve A depicts a field with no large maximum value, whereas
curve B depicts a field which attains a relatively large maximum value within the transition region.
In this figure x, is constant.

substances are adsorbed at the interface. Thus, for momentum transport at ‘clean’
interfaces, equilibrium or thermodynamic interfacial tension appears to be the only
important surface-excess quantity. (Interfacial tension constitutes a surface-excess
thermodynamic pressure in Part II (cf. (4.36) with ¢ = p).) However, sensible
interfacial shear and dilatational viscosity coefficients (characterizing the macroscale
rheological properties of ‘newtonian’ interfaces (Scriven 1960)) are observed when
surfactants are present at the interface (Wasan et al. 1971; Wei & Slattery 1976).

(b) Placement of the dividing surface

According to traditional interfacial transport theories (Eliassen 1963; Murphy
1966 ; Slattery 1967 ; Deemer & Slattery 1978; Alts & Hutter 1988), which aim at an
‘exact’ description of interfacial (and, concomitantly, bulk) transport phenomena,
the location of the Gibbs (1957) ‘dividing surface’ must be precisely defined in order
to provide exact definitions of requisite surface-excess properties. However, in the
asymptotic theory presented here, the precise location of the ‘dividing’ parent
surface proves both unnecessary and irrelevant. Rather, the only constraint placed
upon the location of the coordinate parent surface —the latter representing the
position assigned to the macroscale interface in the limit ¢—~0 —is that it must be
located somewhere within the inner interfacial transition region; additionally, the
principal curvatures k; and «, of the parent surface must be macroscale quantities
(cf. (2.1)).

As proof that the precise location of the parent surface is inconsequential in the
unambiguous definition of surface-excess properties, consider the consequences of a
shift by an amount |A%| = O(1) in the location of the choice of parent surface in
physical space. Changing the position of the parent surface from 7, = 0 to 7%, = a,
where both values of 7, lie within the inner region (i.e. @ = O(1)), will result in a
change,

AN = eLUa [11(0)—I2(0)]dﬁ+J

=0 fi=a

+ 00 a

[4,(0)— 4, (a)] dﬁ+J

fi=—c0

[12<0>—I2<a>1dﬁ},
(8.1)

in the value of the surface-excess quantity 4%. Order-of-magnitude values for the
various integrands appearing above are, respectively,

2,(0)—2,(0) = O(1) (8.2)
Phil. Trans. R. Soc. Lond. A (1993)
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and 2,00)—2(a)=0() (x=1,2). (8.3)
Thus, upon using table 1, the difference AA® derived from (8.1), namely
A = 0(1) O(e) + O(e) O(e") + O(e) O(¢") = Ofe), (8.4)

becomes negligible as ¢ - 0. Accordingly, varying the position of the parent surface
within the interfacial transition region will have no sensible effect upon the numerical
value of the O(1) surface-excess quantity 4%, at least to the order of approximation
of our theory. Similar remarks apply to the insensitivity of ¢* to the exact placement
of the dividing surface within the interfacial transition region.

Although most prior theories (Kirkwood & Buff 1949; Eliassen 1963; Murphy
1966) attempt to precisely define the requisite position of the dividing surface, so as
to render these theories ‘exact’, such a definition is not necessarily possible. In
particular, Schofield & Henderson (1982) conclude that, from a statistical mechanical
point of view, the position of the ‘surface of tension’ (Kirkwood & Buff 1949) is ill-
defined, and hence ‘... could be placed anywhere in the interface region by choosing
different contours in the definition of the [microscale] pressure tensor’.

(¢) Curvature constraints

Our asymptotic view stands in marked contrast to the more traditional view of
other authors (Eliassen 1963 ; Murphy 1966 ; Slattery 1967 ; Deemer & Slattery 1978;
Alts & Hutter 1988), which claim to be exact theories, and hence valid for all
curvatures. However, in our asymptotic view, the conventional view of an interface
as a singular two-dimensional surface can only be justified for circumstances in which
the principal curvatures of the (macroscale) interface are of macroscopic order, i.e.
characterized by the same linear dimension L as the bulk-fluid depths. Indeed, the
traditional theories suppose that a homogeneous bulk-fluid phase exists on either
side of the interfacial transition region, thus (implicitly, if not explicitly) imposing
restrictions upon the magnitude of the curvature for which their theories are
applicable.

(d) Surface-fixed coordinate system

In this paper, a surface-fixed coordinate system is developed which moves and
deforms together with the two-dimensional parent surface (assumed to physically
coincide with the macroscale interface) to which it is affixed. Since the parent surface
is not defined to be a ‘material’ surface, our theory remains valid for systems in
which convective mass transport (for which n:(v—u) # O(¢)) occurs across the
macroscale interface. This applicability to interfacial mass-transfer phenomena
contrasts with the theories of Eliassen (1963) and Goodrich (1981), which are limited
to material interfaces with a fixred mode of motion, involving the motion of parallel
surfaces bounded by an envelope of orthogonal straight lines. In addition, our use of
a surface-fixed control volume bounded by non-material boundaries eliminates the
need for the approximations introduced by Slattery (1967) and Deemer & Slattery
(1978) when projecting the contents of a material element onto their dividing surface.
Close to our view, both Slattery (1967) and Deemer & Slattery (1978) use a non-
material dividing surface to account for situations involving convective mass
transport across the interface. However, since they use a material body as their
control volume, the latter will not necessarily coincide with the region being
projected onto the dividing surface (compare the two regions R® and R®* given in

Phil. Trans. R. Soc. Lond. A (1993)
8-2


http://rsta.royalsocietypublishing.org/

/\
A

' \

e ol

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
3\

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

200 G. M. Mavrovouniotis and H. Brenner

Table 5. Definitions of geometric quantities for two- and three-dimensional spaces

quantity three-dimensional form two-dimensional form
tensor indices 1=1,2,3 a=1,2
differential lineal element dx = g,d¢’ dx, = a,dg*
basis vectors g, = 0x/0¢" a, = 0x,/0q"
metric tensor 9= 8:'8; Q5 =a, ag
determinant g =det(g,) =g, 8, % &l a = det (a,;) = la, x a,*
reciprocal basis vectors (g, 2% 8%, (@', a?),
with g'- g, = o} with a*-a, = &%

idemfactor =g g=g'g =Vx I.=1—-nn=

a,a*=a*a, =V x,
gradient operator V =gi0/o¢ V,=1-V=a*0/0¢
alternator e=g'gighe,, e, =¢n=a"ale,
alternating tensor € = 8:°8; X & =V (9) ey €p=0a, XA N =1/ (a)e,

Deemer & Slattery (1978)); this leads to unnecessary approximations (see their
equations [27]-[29]). Similar approximations arise when a space-fixed control
volume (Dumais 1980) is employed. Our parametrization of space via a surface-fixed
coordinate system thus appears more versatile than the methods cited above.

This work was supported by grants from the Army Research Office and the Office of Basic Energy
Sciences of the Department of Energy. We are grateful to Dr David A. Edwards of MIT, Dr Li Ting
of W. R. Grace and Dr Darsh T. Wasan of the Illinois Institute of Technology for their interest and
encouragement.

Appendix A. Geometric relations

This appendix provides a convenient compendium of important relations used in
this paper pertaining to our surface-fixed coordinate system (figure 2). Table 5
defines the necessary geometric quantities for two- and three-dimensional spaces.
Throughout this and Appendix B, the summation convention on repeated indices
will apply, except where explicitly disclaimed.

In addition to the quantities defined in table 5, the vector

n=a,xa,/va (a=|a,xay,’ (A1)

constitutes the unit normal to the parent coordinate surface; moreover,

1 (t=y
3=l (7 (42)
is the Kronecker delta. The permutation symbol
0 (=2,
s =11 (a=1,=2), (A3)
-1 (a=2,=1)
and
0 if any two indices are equal,
e =3 1 if (4,7, k) is an even permutation of (1,2, 3), (A4)

—1 if (¢,5,k) is an odd permutation of (1,2, 3)
Phil. Trans. R. Soc. Lond. A (1993)
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are, respectively, the second- and third-order permutation symbols. The alternator
is related to the cross-product operation by the expression
& UV =—UXU, (A 5)

where u and v are arbitrary vectors.

In developing our surface-fixed coordinate system, the ¢®-coordinate curve has
been defined (see §2) such as to be orthogonal to all ¢3-coordinate surfaces (the latter
characterized by the assignation ¢* = constant). Thus, understanding of the metrical
properties of the interfacial system can be enhanced by introducing the notation for
the three-dimensional coordinate parametrization given below.

Let the basis vectors g, for three-dimensional physical space, as parametrized by
the surface-fixed coordinates ¢’, be written in the form

*a,=g,=0x/0¢* (x=1,2), *n, = g, = 0x/0¢>. (A 6a,bd)

In this notation, the basis vectors for any ¢*-coordinate surface are represented by
*q_ and the (non-normalized) tangent vector to any ¢*-coordinate curve by *n,. Since
the ¢3-coordinate surfaces are orthogonal to the ¢3-coordinate curves, it follows that

*a, *n, =0 (A7)
at every point x. The metric tensor g;; then becomes

Joup = *a, *ay = o Y3z = Ny ¥Ry = (*h3)%,  Goz = 93.=0, (A 8a—c)

with *h, reckoned to be positive. With use of the above relations,
g = det (94) = *a(*hy)?, (A9)
wherein *a = det (*a,p) = [*a; X *a,|*. (A 10)

Orthogonal to the ¢*-coordinate surface is the unit normal vector
*n = *n,/*h, = *a, X *a,/\/*a, (A11)

in which the basis vector triad is taken to be right-handed in the order (*a,, *a,, *n,).
Analogous notation holds for reciprocal basis vectors and tensors. Kxplicit
representations for the reciprocal basis vectors are

*at = (Fag, *a;—*ay *a,)/*a, (A 12)
*a® = (*ay; *a,— *a,, *ay)/*a, (A 13)
*n® = *ny/gs;. (A 14)
In this notation, the ¢*-coordinate surface idemfactor may be written as
*[ = [—*n*n = *a, *a* = *a**a,, (A 15)
and the ¢*-coordinate surface alternator as
*e, = &' *n = *a, *ay*e. (A 16)

The ¢*-coordinate surface analogue of (A 5) is given by the expression
*g Uty = — (*u X *v) - *n. (A 17)

Analogous to the operator V, defined in table 5 is the ¢*-coordinate surface gradient

operator,
def d

*W,=*V= *a“&!—;. (A 18)
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(@) Differential elements

Differential physical-space elements can be constructed by combining in different
manners the differential position vectors

dx, = *a,dqy,, (A 19)
dx ., = *a,dqy,, (A 20)
dx g, = *ng dg3. (A 21)

Here, dx,, and dxg, are arbitrary differential lineal displacements lying upon
(strictly, tangent to) the ¢°>-coordinate surface, whereas dx,, is a displacement along
the ¢*-coordinate curve.

For the above relations,

dn = *n-dxg = *hydg® (A 22)
is a differential line element along a ¢®-coordinate curve, and
d*4 = *n-[dx, x dx,] = *n-[*a, x *ay] dgfy, dgfy,

= Ye,pdqty gy = V/(*a) €5 dg dglyy (A 23)

is a differential surface element d*4 lying upon a ¢3-coordinate surface. A differential
volume element dV which is bounded laterally by a ¢3-coordinate curve envelope and
by ¢3-coordinate surfaces on its top and bottom is given by the expression

dV = [dxg, x dx )] dxg, = *e,,*hy dgfy, dgfy) dg® = d*4 dn. (A 24)

Consider a surface composed of an envelope of ¢3-coordinate curves (such as the
open surface constituting the lateral boundaries of the control volume depicted in
figure 4). The closed curve *C(s) will be chosen such as to represent the intersection
of this surface with an arbitrary ¢*-coordinate surface, in which s parametrizes the
position of a point along the curve. The differential position vector in the (positive)
direction of the curve *C' may be written as

dx, = *t, ds, (A 25)
wherein *t,) = 0x/0s = *h, *t, (A 26)

with *h,(s, ¢*) the metrical coefficient at a point of the curve, and *# the unit tangent
vector to the curve in a positive sense.

A differential element of length d*C' along the curve will thus be given by the
expression

d*C' = *t-dx, = *h,ds. (A 27)
The directed differential areal element d.S of this surface possesses the representation
dS = dx, x dx, = (¥t x *n) *h, *hydsd¢g® = *md*C dn, (A 28)

in which
*m = *tx *n (A 29)

is the outwardly-directed unit normal vector to the differential surface element.
Since *m is orthogonal to both *n and *¢, it is also the vector normal to the
differential element d*C, and lies in the tangent plane to the ¢*-coordinate surface.
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Appendix B. Projections onto the parent surface

To derive the macroscale interfacial conservation equations, we require the
projections of arbitrary areal and lineal elements lying upon a ¢3-coordinate surface
onto the coordinate parent surface along an ‘envelope’ determined by the ¢
coordinate curves (figure 3).

(@) Surface element

In the sense of the preceding paragraph, the projection of the differential areal
element (cf. (A 23))
d*4 = v/ (*a) eaﬁdQﬁ) dq{z), (B1)
lying on an arbitrary ¢3-coordinate surface, onto the parent surface ¢> = ¢j is given
by the expression

d*4 = *M dA, (B 2)
in which d4 = +/(a) eaﬂdﬁl) dqu), (B 3)
and *M =/ (*a/a). (B 4)

Equation (B 4) permits explicit calculation of the areal ‘magnification factor’ *M
given below (cf. (B 22)).
According to (A 10), *a is defined by the relation

*a = [*a, x *a,|* = (*a, *a,) (*a," *a,) —(*a;" *a,)®. (B 5)

Differentiation of +/*a with respect to an arbitrary variable £ gives

0V *a 1 (0*a
= — . B
) 6
From (B 5),
1\ 0*a 0*a 0*a 0*a 0*a
R e S R e )
0*a 0*a
= (ag, *a,—*a,, *a,) agl + (*ay, *ay— *a, *a,) a_gz (B7)
Upon using (A 12) and (A 13), the above relation may be expressed as
1\ 0*a 0*a
= % Ky, (2 B 8
(o) = o) 9
whence (B 6) becomes
M *a o [5.0.0%a
= a2, B9
=Vl 9
In our particular case, £ will be chosen as ¢°.
Use of the definitions (A 6) produces the expression
0*a 0 (ox 0 [ox\ 0*n,
o _— |2 )= 2= ) B 10
a’  0Og° (W") g (aqg) g (B10)

Application of (A 11) yields
0*n,  O(*hy *n) (©*h3> o L (a*n>
= = h ) B 11
og* g™ 0g* Ty og* ( )

Phil. Trans. R. Soc. Lond. A (1993)
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Upon using (A 18) together with the known symmetry of the curvature dyadic b (cf.
(2.9)), we obtain

0*n/0¢* = *a " (*V, *n) = (¥*V,*n) *a,. (B 12)
Differentiation of the normalization relation *n-*n = 1 with respect to ¢‘ gives
*n-(0*n/dq") = 0. (B 13)

Substitute (B 11) into (B 10), form the scalar product of the resulting expression
with *n, and use (B 13) (with ¢ = «) to simplify the result. This yields

(0%hy/0g”) = *n- (0*a,/0g"). (B 14)
The orthogonalization condition *a,-*n = 0 may be differentiated with respect to ¢*
to give
0*a 0*n
$p. al _ %, [T
" (aqﬁ) % (aq3)' (B 15)
From the above relations, we thereby obtain
0*h, v [O%n
— 3= —%q [ — B1
(aq“) & (aq")’ (B 10
*
whence *n (6 lgqah:’) = —(*V, *n)-*a,, (B 17)
wherein *V,=*n*n"V. (B 18)

Substitute (B 12) and (B 17) into (B 11) and introduce the resulting expression
into (B 10) to obtain
0*a,/0g® = (*V *n—*V, *n) - *a, *h,. (B 19)

Scalarly multiply the above equation with *a*, and recall that *a*:*n = 0. This
yields

*
*aa~—aaq‘§“ = (¥V, *n):*a, *a* *h, = (¥V," *n) *h,. (B 20)

Use the definition for the mean curvature *H given in (2.11) and subsequently
substitute the resulting expression into (B 9) to derive the equation

O/ *a/0q = — 2¥H A/ (*a) *h,. (B 21)

The latter can be integrated along a ¢*-coordinate curve from the parent surface
(@® = ¢3) to an arbitrary ¢*-coordinate surface, thereby producing the relation

M = v/ (*a/a) = exp (—f 2% *h, dq3>. (B 22)

a

(b) Line element
Similarly to the above, the projection of a differential lineal element (cf. (A 27)),
d*C = *h,ds, (B 23)

lying on the ¢*-coordinate surface, onto the parent surface along curvilinear lines
determined by the ¢3-coordinate curves is given by the expression

d*C = *Nd0, (B 24)
Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

/\
A

' \

e ol

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

) N

\

A
[

y 9

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Interfacial conservation equations. I 205
wherein dC = h,ds, (B 25)
and *N = *h,/h,. (B 26)
An explicit expression for the lineal magnification factor *N may be established by
considering the derivative
0*h, 1 [0(*h,)? o
F 2*71,6[ o | (520
From (A 26), one can write
1)\ 0(*h,)? o*t
(§> aq; = *t,, -—aqf;). (B 28)
Use of (A 6), (A 11) and (A 26) yields
0%ty 0 (Ox) _ 0 (0x) _ 0(*hy*n)
o o*\os)  0s\og®)  0s (B 29)

Upon using the expression
O(*hg *n) /0s = *t ., V(*hg *n) = *t - (V¥*n) *hy+*t - (V*h,) *n, (B 30)

together with (A 26), (B 28) and (B 29), and subsequently noting that *-*n =0
(since *t is a vector tangent to the ¢3-coordinate surface), the derivative (B 27)
becomes
0*h,/0q®> = *t*t:(V¥n) *hg *h, = —*Kk ) (*t) *hg *h,, (B 31)
wherein
Ky (¥E) = = *t¥t . (¥V  *n) = *t*t:*b (B 32)
is the curvature at a point of the ¢*-coordinate curve. Integration of (B 31) along a
¢*-coordinate curve from the parent surface to an arbitrary ¢3-coordinate surface
yields

~
5N = *h,/h, = exp (—J i o (1) *hy dq3). (B 33)
o

The unit surface vector *m (cf. (A 29)) that forms the outward normal to the curve
d*C will vary with ¢* according to the equation

0*m 0%t 0*n
b AV I iy B34
3 aqa><n+t><a3 (B 34)

Upon using (A 26) and (B 29)—(B 31), one obtains

0%t 1 (3%, 1 (0%,
A (*h)2\0g® ) @ *h,\ Og®

= —%p5: (Vn) *h, ¥t + % (V¥n) *hy + %2+ (V¥hy) *n, (B 35)

and 0*n/0q® = *n,-V*n. (B 36)
Use of (A 29) together with the vector identity
ax(bxc)=b(ac)—c(a'b), (B 37)
(in which a, b and ¢ are arbitrary vectors) yields the relations
(*t-V*n) x *n = *m(*t*t:V¥n) — *t(*m*t:V*n) (B 38)
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206 G. M. Mavrovouniotis and H. Brenner
and *t X (*n-V*n) = —*n(*m*n:V*n). (B 39)
In the above equation we have used the identity (cf. (B 13) with ¢ = 3)
*n*n:V*n = 0. (B 40)
Substitute (B 35), (B 36) and (B 38)—(B 40) into (B 34) to obtain
0*m/0q® = — (*t*t+*n*n) - (V*n) - *m*h,. (B 41)
Upon integrating the above equation along a ¢*-coordinate curve, the expression
*m = m—Jq3 (*t*t+ *n*n) - (V¥n)  *m*h, dq¢® (B 42)
is obtained. B
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